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1. Introduction

Some of the most difficult  to find bugs in systems programs arise in situations of

con current access to data structures. Thus the need for a precise understand ing of

the semantics of parallel programs is clear. The attainment of a suitable formal

definitio n of parallel prog ram semantics will allow construction of automatic verification

tools. These should help to eliminate the frustrat ing,  “i rr eproducible~ bugs which

usuall y plague an operating system.

The earliest attempts at verif ying parallel pr ograms , e.g. (Habermann 72,

Brin ch Hansen 72] were bas ically informal and concerned primarily with weak

correctness. [Flon 76] describes a semi-formal approach to verif y i ng concurrently

accessed abstract data types which contarn path express ons. Hoar. ~Hoare 74)

gave a formal axiomatization for monitors. These latter two papers take a data—

orien ted view of parallelism which , thoug h quite reasonable for the problems treated ,

is not par ticularly suited for proof of such strong correctness properties as safety

fr om blocking and deadlock. By da ta-oriented we mean with regard only to concurrent

access to data structures , i ndependent of the control structures of the actual

pr ocesses.

The approach of Owicki and Gries [Owicki 76] is a process-oriented extension

of Hoars’s axiom system for sequential programs (Hoare 69) - close attention is paid

t o the form of the actual processes. Our goals are closely related to those of Owicki

and Gries , alth ough our approach is quite different.  There have seen similar

approaches , notably (Keller 76, Lamsveerde 76], The work presented here is an

outgrowth of some ideas discussed in (Flon 77].
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We shall begin by using Dij k stra ’s predicate tran sformers , primarily the concept

of weakest pre-condition , t o describe the semantics of noadeterministic programs

which differ  fr om Dij kstra ’s [Dijkstra 76] in that they are not necessarily required to

terminate. In particular we will discuss the weak correctness of such nondeterministic

pr ograms , along wi th the strong correctness issues of blocking, deadlock, and

starvation.

• Subsequently we discuss the relationship between nondeterminism and

• parallelism . We show how parallel programs can be effectively transformed into

nondeterministic pr ograms , so that the results obtained for nondeterministic programs

can be i ndirec t l y used to verif y parallel programs. Several examples are treated ,

including the problem of the Five Dining Philosophers , which relies on a

synchr onization primitive , and an old Mutua l Exclusion scheme which relies only on the

indivisibili t y of access to memory.

2. The Nondeterministic Command Rep

Dijkstra (Dijkstra 76) describes the semantics of the repetitive guarded

command, wr i tte n

do B1~4S1 II B~ 4S~ II. . 8n~
5n 2~

in terms of the weakest (i.e. necessary and sufficient) pre-condition to the command

whi ch guarantees termination with a given post-condition. The intent of DO is that the

guards BJ are evalua ted , a true one is chosen (nondeterministicall y), and its

corresponding statement S~ is executed. The process is continued until  no B~ is t rue ,

at whi ch point DO terminates. Formall y,
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wp(DO, R) — (3k
~
O)Hk(R)

140(R) — R A

Hk+l(R) — (3J~1..n)B~ A (YJ(1..n)(B~ ~ wP(S~, Hk(R)))

where Hk(R) gives the weakest pre -condition which assures that  R will be established

and the loop will terminate in at most k steps. We define for our purposes a similar

• command , REP, denoted

rep 81-.S 1 II B~-.S~ II . . ~~n
4Sn ~~L

REP has similar behavior to DO, with the exception that  REP will not terminate unless

the command “exit” is executed. Thus , if no guard evaluates to true , REP will “hang ” -

i.e. it wil l  riot terminate. If there is in general no f inal  state , how are we to define the

semantics of REP? -

3. Weak Correctness

3.1 Invariance

One way to represent the weak correctness of REP is in terms of a set of

assertions {P~ I 1~ j~ n), where n is the number of guards and P~ is guaranteed to hold

whenever Si is executable. That is, a selecti on is about to be made from among the

guard s and B~ is tr ue. If we denote the fact that P must always hold whenever B~

evaluates to true as wLp~(REP~ P), we have

wl~~(REP, P) — (Vk�O)W~(P)

W~(P) - B~..P

W~~ 1(P) — (Yi( 1..nXB 1 ~ wlp ( S~, W~(P)))
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W~(P) is the weakest condition which guarantees B~~P afte r exactl y K state ments have

been executed , if it is possible to execute that many. The predicate wLp(S , R) is

Dij k stra ’s weakest liberal pre-condition , and is equivalent to vip without requir ing

terminat ion.

As an ex amp le, consider

1—0 -, x~-x/2; j~ odd( x) tb~~ 1+- i else skip fi ll
I —i -

~ x i-x— 1

Let P 1 be even( x) and P2 be odd(x) . Then by the above recurrence ,

wlp 1(REP , even(x)) — (1—0 ~ even(x))

wlp2 (REP,odd(x)) — ( I—i ~ odd(x))

3.2 Pot.ntiality

Let us also consider the question of whether or not a given guard can ever (has

the potential to) evaluate to true. That is, what is the weakest pre-condition to REP

that  guarantees ~~~ existence of a f in i te  execution sequence which leads to the t r u th

o f B ~? Let

wpot(REP , P) — (Jk�O)V k(P)

V0( P ) — P

Vk+l(P) — (3jE1..n)(8~ A w~(S~, Vk(P)))

Then wpot(REP , B~) is th e desired weakest pre-condition. In the above recurrence ,

V k(P) gives the weakest pre-c ondition that guarantees the existence of a length-k

execution sequence which establishes P.

For examp le, if REP is

~~~
A-.x4-O IIB- . x.-1 lI x-1 -,x4-x+1 per
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then guard 3 (x —1 )  has the potential to become true if f wpot(REP , x—1 ) , which

evaluates to (x — 1 v B), is true at entry.

4. Strong Correctness

4.1 Blocking

Neither wtp j nor wpot is suff icient  to guarantee that REP will do anything useful.

For example , it may be that eventually no guards will  be true and the command wil l

~g”. We shall say that REP is blocked if such a state is reached , and is blocking-free

such state can possibly be reached. The weakest pre-condition that  guarantees

~ REP is blocking-free is

wbp(REP) — (Yk�0)Gk

— true

— (3jE1..n)B~ A (VJ~1..n)(B~ - wp(S~, Gk))

Here, Gk is the weakest pre-condition that  guarantees at least a length-k execution

sequence. For example , if REP is

r.~~ x>y - x4-x-y II y>x y+-y-x ~~~
then by the above recurrence

wbp(REP) — xøy A (x~O v y�O)

4.2 Dead lock

DeadLock in a system of parallel processes is defined in [Holt 72] as a state in

which “one or more processes are blocked forever because of requirements  tha t  can

never be satisfied .” We will call a t~ondetermj rust&c pr ogram deadLocked if it reaches a

state from which , f or any guard , there is no possible execution sequence which will
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lead to its t ru th .  A deadlock-free program is one in which it is not possible to reach a

deadlock state.

Consider the predicate wpot (REP , B~) for some REP command. That predicate

gives the weakest pre-condition that  guarantees the existence of an execution

sequence which leads to the t r u th  of guard j. Suppose wpot (REP , B~) is a lways t rue

whenever a guard selection is made , and that  REP is blocking-free. Then REP can

never reach a deadlock state wi th  respect to guard j , since B~ always has the potent ia l

to evaluate to true. This condition , denoted wdp ~(REP )  is precisel y defined by

wd~~(REP) — wbp (REP) A (Vk 1..n)wlpk (REP , wpot (REP , B~))

4.3 Starvation

The phenomenon of starvation in a system of paral le l  processes is another

strong correctness issue that  we must consider in addition to blocking and deadlock.

Dijk. stra (Dijkstra  71) br ie f ly  discusses this issue with respect to the problem of the

Five Dining Philosophers. In a nondeterministic program , we say that  a par t icular

s ta tement  may starve if it is possible for the program to reach a state in which the

statement’s guard is false , and s tate  transitions which leave it false may continue to be

taken indef ini te ly .  Thus a given guard j is s tarvat ion-free  if it is not possible to reach

a state f rom which there is an execution sequence which forever mainta ins  -.B~. Let

this conditio n be denoted ws~~(REP). Then

wsp~(REP) — wbp(REP ) A -wpot (REP , U(_B~))

U(R) - (Vk �O) Uk(R)

L10(R) - R I

Uk+l (R) — (3i(1..n)(B1 A wp(S~, Uk(R )))

Uk(R) gives the weakest pre-co ridit ion which assures the existence of a length -K
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exec ution sequence during which R is always true. U(R) requir es tha t  there be an

unbounded execution sequence which main tains  the t ru th  of R. Thus ws~~( REP ) gives

the weakest pre-cond ition which denies the possibility of r eaching a state in which

U(~B~) holds.

4.4 Invariants

It is not always necessary to compute all of the stated recurrences in the

previous sections in order to verif y a give n program . The following theorems follow

from the previousl y defined recurrences:

Theorem 1

• ( (YkE 1..nXJ A Bk wlp(S k, j) )] A (J ~ (B~ P))

I. J wl p~(REP~ P)

That is , any predicate j  which is invar iant  across each statement  and implies (B
J~~P)

wil l  suff ice  to guarantee wi~~(RE P, P). -

Theorem 2

[CVKE1..n)( J A Bk — WP(S K, J) ] A (j * (JkE l ..n)B k )

l~ j  wbp(REP)

Similar ly ,  an invariant  predicate which implies the existence of a t rue guard must be

suf f ic ien t  to guarantee absence of blocking .

Theorem 3

(CVkE 1..nXj A .. wp(S~ , J)] A (j — (3k l..n)B k ) A (j -. wpot(R EP , B~))

I. j  — WdP J(REP)

Any invar i ant  predicate which implies both safe ty  from blocking and the pot ent ia l  for

to be established must guarantee guard j to be safe f rom deadlock.



8

Theo rem 4

[(VIc E 1..n)(J A Bk * wp(S k, J) ] A (J - (Jk l..n)B k ) A (J -s

E J ws~~(REP)

If an invariant predicate implies that  no unbounded execution sequence exists which

keeps B~ false , then guard j must be free from starvation.

4.5 Example

Consider the command

x>0 A y<n -4 x4-x- 1; y4-y+l Il
y>O A z<n -

~ y~-y- 1; z4-z+ 1 II
z>O A w<n -

~ z4-z- 1; w4-w+1 f~w>O A x<n -+ w4-w-1 ; x4-x+1

L e tj b e

O�x�n A O�y~ n A O�z�n A O�w~ n A O<x÷y+z+w c4n

We will  show that if j  is true at entry, the command is safe from blocking. By

Theorem 2, J — wbp(REP) because

1) 9 A * wp(S 1, J)

O<x�n A O~y<n A O�z~ n A O�w�n
1�x~ n+ 1 A -1�y~n-1 A 0�z�n A O~w�n A O<x+y+z+w<4n

(the others follow by symmetry)

2) J (]kEl ..n)B k

O�x�n A 0�y~ n A O~z~ n A O~wSn A O<x+y+z+w<4n
— (X>O A y<n) v (y>O A z<n) v (z>0 A w<n) v (w>0 A x<n)

5. Reduction of parallel programs to nondeterministic programs

We have seen that  such problems as weak correctness , blocking, deadlock , and
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starva t ion  can be formalized for nondeterministic programs. These results can be

applied to parallel programs if we can effectively convert parallel programs to

eq uivalent nondeterministic programs. Here the meaning of equivalence is that  for any

execution sequence of one program , there is a corresponding execution sequence of

the other such that  values of variables in the parallel  program have the same history

sequence. (Note that  we will have to introduce program counters to t r ans fo rm

parallel ism to nondetermin ism, so they are only equivalent in this sense.) For a

rigorous t rea tment  of models of parallel  computat ion see [Karp 69).

We will outl ine a procedure for t ransforming parallel  programs made up of the

cobegin-coend construct with conditional cr i t ica l  reg ions for synchroniza t ion

(Br inch Hansen 73]. The sequential parts of these programs consist of assi gnment ,

condi t ionals , while-loops , compounds , and sequencing. We will use the notion of

effective &ndivisib&lity of program segments. A segment is effect ivel y indivisible if the

f ina l  values of variables are always determined only by their ini t ia l  values. That is ,

they are not affected by the other processes. For example , in the program

cobegi n x i-x+ 1 // x~-x+ 1 coend

x .—x+ 1 is not indivisible because the final  value of x may be either 1 or 2 more than

the initial value. If we convert the program to

cobegiri c4-x; x i-c+ 1 // d+-x; x~-d+1 coend

then each assignment is indivisible. The conditional critical reg ion itself is by def in i t ion

effec t tv e ly  indivisible , so the program

cobegi n
with x when true do x4-x+ 1 //
with  x when t rue do x#-x+1

coend

is in indivisible form.
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0
We first  convert the entire parallel program to indivisible form — that  is , a

pr ogram in which every assignment statement which is outside of a conditional critical

reg ion is indivisible. This is accomplished by introducing variables local to each

process as in the previous examp le. Next , each statement is converted as follows:

1) cobegin P 1 //~~~// 1’n cQ~i2-~
The program skeleton is converted to

<guarded commands for P 1> U

<g uarded commands for P,.,> II

c1—m 1 A . . ~~~~~ -, exit

Here , <guarded commands for P1> consists of a number of guarded commands of the

form

<condition> -, <stat ement list>

and m~ is the largest val ue of c~ assi gned i n <guarded commands for ~u >~ The “exi t ”

command is introduced to provide a means for termination.

2) Sequencing of the form S i ; .  . .Sn

Statement lists are converted to

<g uarded command> II

<guarded command> fi

3) Assi gnmen t of the form x.-e

If the program counter for the previous statement is n, this is t ransf ormed to
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p~.n+ 1 -9 x+-e;

4) Conditionals of the form if B th~~ S1 ~~~ S2 fi

Let K 1 be the number of di f ferent  values of the program counter resulting from

the transformation of S1, and k2 be the same for 
~~ 

If n is the program counter for

the previ ous statement , the conditional is transformed to

p.~.n+l A B -e p14-n+2 II
A -‘B -, p~i-n+k 1+2 fi

p1—n+ 2 . . .

<guarded commands for S1>

P~~n.f ] +K 1. .. .

p1—n+ 2+k 1

<guarded commands for S2>

P~~fl+ 1+k 1+k2 . . .

~‘} Loops of the form while B do S od

Let K be the number of different values of the program counter which result

from converting S. If n is the previous program counter ,

P~—n+ l A B -, p1i-n+2 II

P~~n+ l A -B -. p~i-n+2+k

p1—n+ 2 . . .

<g uarded commands for S>

P~~n+ 1+k . . .
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I

6. Application

Even thoug h by conversion to nondeterm inism we have obtained formal

defini t io ns for the var ious correctness issues associated with paral lel programs , the

ques tion rema ins as to whether this approach is practical. In this section we shall

t rea t  various examples to show the power of our method. The approach of Owicki

(Owicki 75] is both practical and highly dissimilar t o ours , so by way of comparison

some of the examp les we discuss have been previousl y handled by her method.

6.1 Weak correctness

The following example appears in (Owicki 75], where its weak correctness

canno t be proved without the addition of auxi l iary variables. The discovery of the

righ t set of auxil iary variables (in general) requires much intellectual effort.

cobegin
with x when true do x ’-x+l //
with x when true do x4-x+ 1

coend

The t ransformat ion to a nonde terministic program also introduces auxi l iary variables

(pr ogram counters) , but in a uniform manner. Even though some of the program

counters may be superfluous , we remove the burden of inventin g auxil iary variables

and the corresponding operations upon them. The nondetermin istic version is

reP
4 x~-x+~ ; p 14-1 II

P2 0 -, x4-x+ 1; 
~2~

1 II
~i~~

1 ‘% p2—1 exit
per

It is easily seen that the weak correctness invariant is x— x 0 +p 1+p 2, where x0 is the

ini tial value of x. Since p
~

— l A p 2 —i at the exit , the program will establish x—x 0 +2.

I 
________• • • • -~~~- - -:~~-
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6.2 Mutual .xclusion

We consider a solution to a mutual exclusion problem discussed by Di jks tra in

1965 (Dijkstra 65). Two processes A and B have critical sections which must be

excluded fr om one another. No synchronization primitiv e other than the indivisibility

of a single access to memory is all owed. The following solution is discussed in

(Flon 77):

~~~ m A , m B: boolean ini t ial l y false ,
- prty: (A ,B) nit i a l l y A;

processA: while true do processB: while true do
<think> <think>
inA4 -tr ue; inB.-true;
while m B  ~~ while m A  do

iL prty-B then if. pr ty -A then
inA.-false; inBe-false;
whil e prty — B do skip ~~ while pr ty — A ~~~~~ . skip ~~inA4-true inB i-true

f

<critical section> <critical section>
inAi-.false; inBi-false ;
prtyi-B pr ty i_ A

The nondete rministic version of this parallel system is

L - - - _ _ _ _  -~~ 
- • -
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I
pl~~p2i~1; inAi_ inB ,-false; prtyi-A;

reo
p1— i -e m All_true; pii-2 II
p1— 2 A m B  -e pl.-3 II
p1—3 A prty—B -e inAi-false; p li-4 II
p1—4 A prty sB -. skip II

• p1— 4 A prty ,’B -4 inAi-true; p li-2 II
• p1— 3 A prty~B -, pli-2 II

p1—2 A -‘m B -4 <critical section>; p1.-S II -

p1—S -~ m All_false; pli-6 II
p1— 6 -. prtye-B; p1.- i II

p2—i -, inBi-true; p2I~2 II
p2—2 A m A  -4 p2i-3 U
p2—3 A prty —A -. inBi-false; p2~ 4 II
p2—4 A prty—A -. skip fl
p2—4 A pr ty#A -, inBi-true; p2i-2 fi
p2—3 A prty ,~A ~ p2+-2 fi
p2—2 A - m A  -4 <critical section> ; p2~ 5 fi
p2—5 -4 inBi-f else; p2.-6 Il
p2—6 -4 prtye-A; p2 1_ I II

2~L

To show that the critical sections cannot both be active at the same time , it

suffices to prove that the guards which reflect entry to the critical sections cannot

both be true at the same time. Thus,

• (p 1—2 A -‘m B) A (p2—2 A -m A)

must be invariantly false. Consider the predicate

L — (p 1—3 * m A )  A (p2—3 — m B ) A ((p 1—2 — m A )  V (p2—2 — m B))

(The last conjunct is the negation of the previous formula.) L is Invariant  across all of

the commands, and

L -(p1—2 A -‘m B) v -(p2—2 A -m A)

so clearly the crit ical  sections cannot be active simultaneously. This program is pruved

correct in (Flon 77], using an extension of Owicki ’s methodology, but auxiliary

variabl es are needed in a non-trivial way. The proof presented here is much simp le r.
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6.3 Deadlock

We will show that the following program is subject to deadlock:

rls-r2i—i ;
cobegin

• while true do
with r2 when r2— 1 do r2.-r2-i ~~j
withrl when ri— i do ri~-r1-1 ~~j

~~~ ri ,r2 when true do r1. -r2~ 1 ~~
2~ ll

while true ~2.
with ri when ri— i do rl .-rl-1 ~~
with r2 when r2—1 ~~ 

r2.-r2-1 ~~
~jjj 1 r1 ,r2 when true do rl#-r2 .-1 ~~

os/f

while true do skip ~~

coend

The nondeterministic version is

r1~ r2~ 1; pl~ p2’-p34-0;
reo

p1 —0 A r i — i  -. rill-ri-1; p1.-i II
p1 —i A r2—1 -4 r2.-r2-1; pl.-2 II
p1— 2 -. rI~ r2~ 1;p14-0 II
p2—0 A r2—1 4 r 2 e— r2 -1 ; p2~ i fl
p2—i A ri— I -. rl.-rl-i; p2.-2 II
p2—2 -~~ r i- r2~ 1; p2.-0 II
p3—0 -. skip

2~L -

We can establish the possibility of deadlock by finding an invariant J which implies 
~
‘B
~

• for some j, and then showing that there is a way to arrive at J. The latter property is
expressed by

wpot(REP, J)

For the above program

p1— i A r2—0 A p2—i A rl— 0

is an invariant. It is also possible to achieve this by first executing command I and

then command 4. That is,
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B 1 A wlp( S 1, 84 A wlp( S4, J))

which evaluates to

r i — i  A r2 — 1 A p1—0 A p2—0

whi ch is established by the init i al ization.  Furthermor e , J prevents all but the last

gu ard fr om runni ng, so the ori gin a l parallel pr ogram may deadlock.

6.4 Starvation

In this section we treat the problem of the Five Dining Philosophers

(Dijkstra 7i) . The following parallel prog ram is a solution to the problem which is

known to have the possibility of starvation:

fO~ f 1’-f2~ f3~ f4’- 1;

philosopher 1:
while t rue do

• with fO ,f 1 when 10—1 A f l — i  do f0i-f l .-0 ~~“eat”;
with fO ,f 1 when true 

~~ 
fOe- f 1e-i 2~og/ /

philosopher 5:
while true do

f4,fO when f 4—i A f O-1 ~~ f4 -foø-0 ~~ea t ” ;
with f4 ,fO when t rue ~~ f4~-fQ~-i ~~

od
coend

Below is the corresponding nondeterministic program. It is evident that the program

does not terminate , so we have deleted the superfluous exit statement.
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tOe-f 1e-f2e-t3e-f4e-i ;
p1 u-p2e-p3 -p4.-p5e-O;

• reo
p1—0 A fO— 1 A f l— i  -~ fOe-fle-O; p14-i fl
p1 —i -+ fOI l_ li e -I ;  ple-O II

p2—0 A f l — i  A f2—i -~~ fl e- f2e-O; p2e-i II
p2—1 -~ fl e-f 2.-i; p2.-O II

p3—0 A f2I !1 n f3—1 -, f2e-f3e-O; p3e-1 I~p3—i -. 12e-f3e-i; p3e-0 II

p4—0 n f3—i A f4—1 -, f3.-f4*-0; p4e-1 II
p4—1 p4e-0 ~(

p5—0 A f4— i A fO—i -4 f4e-fOe-O; p5e-l II
p5—i -e f4e-fOe-1; p51-0 U

To prove that the program is not free from starvation , we will use the f ollowing

theorem:

wpot(REP , P) A (P — wpot (REP, B~)) A (P — ‘B~ A (3kE1 ..nXB K A wp(Sk, P)]

- l _wsp~(REP)

The theorem states that REP is subject to starvation whenever it is possible to reach a

state P, fr om which it is both possible to establish B
~ 

and possible not to.

For the Dining Philosophers program , let P be

(f4 0 A f 0 0  A f I — 0  A f2 — O A p 5— i A p1—0 A p2—i) v
( f4 —1 A f O — i A f 1—0 A f2—O A p5.”O A p1—0 A p2—i) v
(f4—0 A fO— O A f l — i  A f2 —1 A p5 l  A p1-0 A p2—0 )

Clearly P “a -Ba. Furthermore,

P — (3k l..n)(Bk A wp(Sk, ~))

because

P “a (83 A wp(S3, P)) V (84 A wp(S4, P)) v (B~ A wp(Sg, P)) V (B io A ~p(S10, P))

To prov, that the state P is reachable, we must show wpot(REP, P). This clearly holds

because statement 3 may be executed f i rs t , and

83 A wp(S3, P) - p2—0 A p1—0 A p5—0 A ((f 4-i A 10—1 ) v (1 4—0 A f 0—0))
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is implied by the initialization. Finally, we show that P wpot(REP, 81). This is

guaranteed by

P “a (B4 A wp(S4, B 1)) V (B10 A wp(S 10, B 1)) v (B4 A wp(S4, Biø A wp(S10, ~~~
Thus , there is a possibility that process 1 (and by symmetry any process) may starve.

7. Practical considerations for program verification

Even though it is sometimes possible to compute the weakest pre-condition

recurrences , in general we will have to use less comp lex techniques if parallel program

verif icat i on is to be practical . If we can discover suff icient l y strong invariants  f or the

nondeter rnin ist ic programs , we can use the theorems of section 4.4 to verify weak

correc tness , safe t y f rom blocking , and safe t y fr om deadlock rather easily.

Verifica tion of safety from starvation can be done by showing that s tar t ing from

a given invar ian t , all possible execution sequences must arrive at a state satisfying the

guard in ques tion. This may be done by proving safety from blocking and def in ing an

integer f unction of the program state which is bounded from below and which is

decreased by every statement other than the one in question. Following is an example

of a proof of starvation-freeness.

Consider the program

• x>0 A y<n -e x .-x-l;  y u-y+ 1 II
y>O A z<n -4 y4-y-1; ze-z+l II
z>0 A x<n -, ze-z-l; x i-x+1 II

For this program , a loop invarian t which guarantees safety from blocking is

0sx~n A O~y~n A O~z~n A 0<x+y+z <3n

Since all three statements are symmetric , we need only prove absence of s tarvat ion
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for the first one. To do that we w i ll show that it is not possible for the second and

the third processes to execute continuously without  event uall y making the f i rs t guard

true.  Suppose the program is in a state in which the f i rs t  guard is false - i.e. x—O V

y—n . Consider the s tate  func t ion  W — 3y+2z+x. W is decreased by exactly 1 by both

the  second and third statements. When x— n A y— O , W can no longer decrease and the

last two s ta tements  cannot execute , guaranteeing that the firs t  s tatement  wil l  execute.

8. Summary

For some time we have been lacking an effective formalism for p arallel program

semantics. The approach discussed in this paper was motivated by two observations -

th~ the impor tant  correctness issues for parallel  programs have counterpar ts  in

nondeterminist ic  sequential programs , and that  paral lel  programs can be ef fec t ive l y

t rans formed to nondeterminist ic  ones. We have therefore presented formal  def in i t ions

for the weakest pre-cond itions which guarantee weak correctness , absence of

blocking, absence of deadlock , and absence of s tarvat ion for non determinis t ic

programs , along wi th  a procedure for the conversion of parall el  programs to

nondet errninism.

As a demonstration of the usefulness of our formal ism we have proved various

properties of several programs , including a busy-wait  mutual  exclusion scheme and the

problem of the Five Dining Philosophers. It remains to be seen to what degree these

techniques will apply to actual operating system examples , al though we have tr ied to

present various methods which reduce the burden of computat ion in exchange for

some intel lectual  creativity,  such as the discovery of invar iant  predicates and

monotonmca ll y decreasing state functions.



20

References

[Br inch Hansen 72) Brinch Hansen , P., A Comparison of Two Synchronizing Concepts.
Acta Informat ica 1,3 (1972), 190-199.

[Brinch Hansen 73] Brinch Hansen, P., Operating Systems Princip les, Prentice Hall, 1973.

(Dijkstra 65) Dijkstra, E. W., Solution of a Problem in Concurrent Programming Control.
Comm. ACM 8,9 (Sept. 1965), 569.

(Dijkstra 71] Dijkstra, E. W., Hierarchical Ordering of Sequential Processes. In Operat ing
Systems Techniques, Hoare and Perrot (eds.), Academic Press, London, 1971.

[Dijkstra 76] Dijkstra, E. W., A Discipline of Programming, Prentice Hall , 1976.

(Flon 76] Flon , L. and Habermann , A. N., Towards the Construction of Ver i f iable
Software Systems. Proceedings of the ACM Conference on Data: Abstract ion ,
Def ini t ion  and St ructure , SICPLAN Notices 8,2 (March 1976), 141-148.

(Flon 77] Flon , L., On the Desi gn and Ver i f ica t ion  of Operat ing Systems. Ph.D thesis ,
Department of Computer Science , Carneg ie-Mellon Universi ty,  P i t t sburgh , Pa.
(May 1977).

[Habermann 72) Habermann , A-. N., Syn chro n izat ion of Communicat ing Processes. Comm.
• ACM 15,3 (March 1972) , 171-176.

[Hoare 69) Hoare , C. A. R., An Axiomatic Basis for Computer Programming. Comm. ACM
12,10 (Oct. 1969), 576-580.

[Hoare 74] Hoare, C. A. P., Monitors: An Operating System Structuring Concept. Comm.
ACM 17,10 (Oct. 1974), 549-557.

[Holt 72] Holt , P. C., Some Deadlock Properties of Computer Systems. Computing
Surveys 4,3 (Sept. 1972), 179-196.

[Karp 69] Karp, R. M. and Miller , R. E., Parallel Program Schemata. J ournal of Computer
an d System Science 3 (1969), 147-195.

[Keller 76) Keller , P. M., Formal Verif icat ion of Parallel Program s. Comm. ACM 19 ,7 (July
1976), 371-384.

(Lamsveerde 76] van Lamsveerde, A. and Sintzoff , M., Formal Derivat ion of St rongly
Correct Parallel  Programs. MBLE Research Report , Brussels , Belgium (1976).

[Owicki 75) Owicki , S., Axiomat ic  Proof Techni ques for Paral le l  Programs. Ph.D. Thesis ,
Depar tment  of Computer Science , Cornell Univers i ty  (July 1975).

[Owicki 76] Owicki , S. and Gries , 0., Verif ying Properties of Parallel  Programs: An
Axiomatic  Approach. Comm. ACM 19 ,5 (May 1976) , 279-285.


